SIR ARTHUR LEWIS COMMUNITY COLLEGE DIVISION OF AGRICULTURE
 $$
\begin{gathered} \text { CHM102 - Credit Chemistry } \\ \text { END OF SEMESTER TWO EXAMINATION - 2018/2019 } \end{gathered}
$$

Date: $30^{\text {th }}$ April, 2019
Duration: 3 hours
Time: 1:00 pm
Student ID Number: \qquad

INSTRUCTIONS

1. This is a THREE hour examination consisting of TWO Sections and a Periodic Table.

Section A-20 Multiple Choice Questions
Section B-6 Structured Questions
2. Answer ALL questions for each section in the SPACES provided.
3. For numerical problems, ALL working must be shown for full marks
4. Use of pocket electronic calculators is permitted.

IMPORTANT FIGURES FOR THE EXAM

Molar volume at r.t.p: $\mathbf{2 4 . 0} \mathrm{dm}^{3} / \mathbf{m o l} \quad 1 \mathrm{~F}=96500 \mathrm{C}$
Molar Volume at s.t.p: $22.4 \mathrm{dm}^{3} / \mathrm{mol} \quad$ Specific heat capacity of water $=4.18 \mathrm{Jg}^{-10} \mathrm{C}^{-1}$

Section	Number	Marks Earned	Maximum Marks
Section A Multiple choice	$1-20$		20 marks
	1		20 marks
	2		20 marks
	3		20 marks
	4		15 marks
	5		15 marks
	6		$125 /$ marks

DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO DO SO

SIR ARTHUR LEWIS COMMUNITY COLLEGE DIVISION OF AGRICULTURE

CHM102 - Credit Chemistry END OF SEMESTER EXAMINATION
 Semester II,

Date: $30^{\text {th }}$ April, 2019
Time: 1:00 pm
Duration: 3 hours

Student ID Number: \qquad

INSTRUCTIONS

1. This is a THREE hour examination consisting of TWO Sections and a Periodic Table.

Section A - 20 Multiple Choice Questions
Section B-6 Structured Questions
2. Answer ALL questions for each section in/ the SPACES provided.
3. For numerical problems, ALL working must be shown for full marks.
4. Use of pocket electronic calculators is permitted.

IMPORTANT FIGURES FOR THE EXAM	
Molar volume at r.t.p: $24.0 \mathrm{dm}^{3} / \mathrm{mol}$	$1 \mathrm{~F}=96500 \mathrm{C}$
Molar Volume at s.t.p: $22.4 \mathrm{dm}^{3} / \mathrm{mol}$	Specific heat capacity of water $=4.18 \mathrm{Jg}^{-10} \mathrm{C}^{-1}$

Section	Number	Marks Earned	Maximum Marks
Section A Multiple choice	$1-20$		20 marks
	1		20 marks
		2	
	3		20 marks
	4		20 marks
		5	

SECTION A

MULTIPLE CHOICE QUESTIONS

Shade the letter that corresponds to the correct answer for each question.

1. Aluminum sulphate can be manufactured in a chemical process as shown in the following equation:

$$
2 \mathrm{Al}(\mathrm{OH})_{3}+3 \mathrm{H}_{2} \mathrm{SO}_{4} \rightarrow \mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}+6 \mathrm{H}_{2} \mathrm{O}
$$

How many moles of sulphuric acid are needed to produce 0.40 mol of aluminium sulphate?
(A) 0.6
(B) 2.0
(C) 1.6
(D) 3.0
2. Which of the following BEST describes a limiting reagent?
(A) The reactant that is not completely used up in a chemical reaction.
(B) The product that is not completely used up in a chemical reaction.
(C) The reactant that is completely used up in a chemical reaction.
(D) The product that is completely used up in a chemical reaction.
3. What is the name of the salt that is formed from the reaction between hydrochloric acid and sodium hydroxide?
(A) Hydrogen hydroxide
(B) sodium hydrochloride
(C) sodium Hydride
(D) sodium chloride
4. In the following reaction: $2 \mathrm{C}_{2} \mathrm{H}_{6}+7 \mathrm{O}_{2} \rightarrow 4 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$, what is the ratio of carbon dioxide to carbon ethane?
(A) $2: 1$
(B) $4: 7$
(C) $7: 4$
(D) $7: 6$
5. John weighed a 20.0 g sample of sodium carbonate $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$ to be used in the laboratory to perform an experiment. How many moles of sodium carbonate is contained in this sample?
(A) 1.89 mol
(B) 212 mol
(C) $2.12 \times 10^{3} \mathrm{~mol}$
(D) 0.189 mol
6. Which of the following half reactions does not represent the oxidation half of a redox reaction?
(A) $\mathrm{Mg}(\mathrm{s}) \longrightarrow \mathrm{Mg}^{2+}(\mathrm{aq})$
(B) $2 \mathrm{Cl}^{-}(\mathrm{aq}) \rightarrow \mathrm{Cl}_{2}$ (g)
(C) $\mathrm{Sn}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Sn}^{4+}(\mathrm{aq})$
(D) $\mathrm{Cu}^{2+}(\mathrm{aq}) \longrightarrow \mathrm{Cu}^{+}(\mathrm{aq})$
7. In the reaction, $\mathrm{Cu}^{2+}+\mathrm{Zn} \rightarrow \mathrm{Cu}+\mathrm{Zn}^{2+}$, the reducing agent is:
(A) Zn
(B) Zn^{2+}
(C) Cu
(D) Cu^{2+}
8. Pick out the statement that correctly defines an oxidizing agent in a redox reaction.
(A)The oxidizing agent causes another substance to be oxidized and gains electrons
(B) The oxidizing agent causes another substance to be reduced and gains electrons
(C) The oxidizing agent is the substance that is oxidized in the redox reaction
(D) The oxidizing agent loses electrons in a redox reaction and is reduced.
9. In the electrolysis of molten copper (II) sulphate using copper electrodes, the substance formed at the anode is
(A) oxygen
(B) copper
(C) chlorine
(D) hydrogen
10. Which two of the following equations represent the reaction taking place at the electrodes when copper sulphate solution is electrolyzed using copper electrodes?

$$
\begin{array}{ll}
\text { I } & \mathrm{Cu}_{(\mathrm{s})} \rightarrow \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \\
\text {II } & \mathrm{SO}_{4}^{2-}(\mathrm{aq}) \rightarrow \mathrm{SO}_{4(\mathrm{aq)}}+2 \mathrm{e}^{-} \\
\text {III } & 4 \mathrm{OH}_{(\mathrm{aq)}} \rightarrow 2 \mathrm{H}_{2} \mathrm{O}(\mathrm{II})+\mathrm{O}_{2(\mathrm{~g})}+4 \mathrm{e}^{-} \\
\text {IV } & \mathrm{Cu}^{2+}+2 \mathrm{e}^{-} \rightarrow \mathrm{Cu}_{(\mathrm{s})}
\end{array}
$$

(A) I and III
(B) I and IV
(C) II and III
(D) II and IV
11. Which of the following will NOT conduct electricity?
(A) Solid sodium
(B) Solid sodium chloride
(C) A solution of sodium chloride in water
(D) Molten sodium chloride
12. What is the term for the electrode where oxidation occurs?
(A) anode
(B) cathode
(C) oxidizing agent
(D) reducing agent
13. What are the oxidation states of vanadium in the ions VO^{2+} and VO_{4}^{3-} respectively?
(A) +4 and +5
(B) +4 and +8
(C) +6 and +5
(D) +6 and +8
14. Identify the substance below that would be an active electrode in electrolysis.
(A) Carbon
(B) Copper
(C) Titanium
(D) Graphite
15. Aluminum is in group III of the periodic table. How many moles of product would be formed by the passage of 193000 C of electricity? $1 \mathrm{~mol}=96500 \mathrm{C} / \mathrm{mol}$
(A) 0.002
(B) 0.02
(C) 0.2
(D) 2.0
16. Which of the following factors will increase the rate of a chemical reaction involving gases?
(A) Decreasing the temperature
(B) Adding less reactants to the mixture
(C) Adding a catalyst
(D) Increasing the volume of the container
17. Which of the following graphs illustrates the Boltzmann distribution curve?
(A)

(C)

(B)

(D)

18. Which BEST describe how a catalyst works?
(A) Catalysts increase the rate of a chemical reaction by increasing the activation energy.
(B) Catalysts increase the rate of a chemical reaction by increasing the concentrations of the reactants
(C) Catalysts increase the rate of a chemical reaction by increasing the temperature of the reaction mixture.
(D) Catalysts increase the rate of a chemical reaction by providing a different low energy mechanism for the reaction
19. The slowest step of the reaction mechanism of a chemical reaction is called \qquad \ldots
(A) Activation energy
(C) Rate determining step
(B) Energy evolution step
(D) Reaction Catalyst
20. The equilibrium constant for the reaction $2 \mathrm{~A}+\mathrm{B} \rightleftharpoons 3 \mathrm{C}+\mathrm{D}$
(A) $\frac{[C]^{3}[D]}{[A]^{2}[B]}$
(C) $\frac{[z A][b]}{[B C][D]}$
(B) $\frac{[3 C][D]}{[2 A] E]}$
(D) $\frac{[A]^{2}[B]}{[G]^{8}[D]}$

SECTION B

This section contains a compulsory questions.
Answer and show ALL working for full marks.

Question 1: STOICHIOMETRY

1. Liquefied petroleum gas (LPG) commonly known as cooking gas contains mainly the hydrocarbon propane $\mathrm{C}_{3} \mathrm{H}_{8}$ that has been compressed into a metal cylinder for easy storage and use. Propane is a very good fuel that burns completely in oxygen gas to produce carbon dioxide and water vapour.
(a) Write a balanced chemical equation to show the products formed from the burning of propane gas. You must include state symbols! (3 marks)
\qquad
\qquad
(b) Mark, a chemistry student, during an experiment combined 10.0 g of propane with 10.0 g of oxygen at s.t.p.

(i) Determine the limiting reactant
 (6 marks)

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
(ii) What reactant was present in excess? Determine the mass of the reactant in excess that was left at the end of the reaction.
(4 marks)
\qquad
\qquad
\qquad
\qquad
\qquad
(iii) What is the theoretical yield in grams of carbon dioxide produced?
\qquad
\qquad
\qquad
\qquad
(iv) If $4032 \mathrm{~cm}^{3}$ of carbon dioxide were collected, determine the percent yield for the reaction.
\qquad
\qquad
\qquad
\qquad
\qquad

Total 20 marks

SECTION C

This section contains Two (2) questions. Choose and answer One (1) question. Show all working for full marks.

Question 2: OXIDATION AND REDUCTION

Use the following equation to answer the questions below:

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{Cu}^{2+}{ }_{(\mathrm{aq})} \rightarrow \mathrm{Zn}^{2+}{ }_{(\mathrm{aq})}+\mathrm{Cu}_{(\mathrm{s})}
$$

A. Define oxidation (1 mark)
B. Define reduction
(1 mark)
C. Which species is oxidized?
(1 mark)
D. Write the half equation for the oxidation
(1 mark)
\qquad
E. Which species is reduced?
(1 mark)
F. Write the half equation for the reduction
(1 mark)
G. Which is the oxidizing agent?
H. Which is the reducing agent?
I. Find the oxidation state of the underlined element in the following substances:
(a) $\mathrm{Cr} \mathrm{O}_{4}{ }^{2-}$
(b) KMnO_{4}
(c) $\mathrm{K}_{2} \mathrm{CrO}_{7}$
(d) Na
J. For each of the following oxidation-reduction reactions, identify which element is being oxidized and which is being reduced by writing their half equations.
(a) $\mathrm{Al}^{3+}+\mathrm{Zn} \rightarrow \mathrm{Al}+\mathrm{Zn}^{2+}$
(b) $\mathrm{Cl}_{2}+\mathrm{Cu} \rightarrow \mathrm{CuCl}_{2}$ (4 marks)
\qquad
\qquad
\qquad

Total 20 marks

Question 3: ELECTROCHEMISTRY

A. Use the information below to answer the following questions:

A current of 2.68 ampere is passed for one hour through an aqueous solution of copper sulphate using copper electrodes.
(a) What ions are present in the electrolyte? (1 mark)
\qquad
\qquad
What ions move toward the anode and the cathode respectively? (2 mark)
\qquad
\qquad
(b) What 3 factors determine which ions are discharged at the electrodes? (3 marks)
\qquad
\qquad
(c) Which ion is discharged at the cathode? Why? (2 marks)
\qquad
\qquad
(d) Write the anode half equation
\qquad
\qquad
(e) Write the cathode half equation (1 mark)
\qquad
\qquad
(f) Calculate the quantity of electrical charge in coulombs that was passed through the compound.
(2 marks)
\qquad
\qquad
\qquad
\qquad
(g) Calculate
(i) the number of moles of copper deposited on the electrode
(ii) the many grams of copper deposited
B. Electrolysis was carried out continuously on a molten sample of MgCl_{2}.

Show a possible apparatus for this electrolysis process.

> (5 marks)

Total 20 marks

SECTION D

This section contains three (3) questions.

Answer TWO (2) questions. Show ALL working for full marks.

QUESTION 4: REACTION KINETICS

A. Define the following terms as they relate to reaction kinetics:
(a) Rate of reaction (1 mark)
\qquad
\qquad
\qquad
\qquad
(b) Catalyst
\qquad
\qquad
\qquad
\qquad
B. List 2 factors which affect the rate of a chemical reaction
\qquad
\qquad
C. The Boltzmann distribution curve below represents the effect of temperature on the rate of a chemical reaction.
(a) Draw the Boltzmann distribution curve. Label your axes.
(3 marks)
(b) Indicate on your curve:

- The activation energy
- The molecules having less than the activation energy
- The molecules having more than the activation energy
(c) Redraw your curve on a different graph. If the temperature, T_{1}, was increased by $10^{\circ} \mathrm{C}$ to T_{2}, draw a separate curve on this same graph to represent the effect of this increase in temperature.
(2 marks)
(d) What effect does this increase in temperature have on the rate of the reaction? Give one explanation.
\qquad
\qquad
\qquad
\qquad
(2 marks)

Total 15 marks
GO ON TO THE NEXT PAGE

QUESTION 5: EQUILIBRIUM

A. The reaction
$2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \leftrightarrow 2 \mathrm{SO}_{3}(\mathrm{~g})$
reaches equilibrium in a closed system. The forward reaction is exothermic. The reaction is catalyzed by $\mathrm{V}_{2} \mathrm{O}_{5}$.
(a) Explain dynamic equilibrium
(1 mark)
(b) What will happen to the position of the equilibrium when:
(i) Some SO_{3} is removed from the vessel? (2 marks)
\qquad
\qquad
\qquad
(ii) The temperature of the vessel is increased?
(2 marks)
\qquad
\qquad
\qquad
\qquad
(iii) The pressure of the vessel is lowered?
(2 marks)
\qquad
\qquad
\qquad
\qquad
B. Consider the following equilibrium reaction

$$
\mathrm{H}_{2}(\mathrm{~g})+\mathrm{I}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{HI}(\mathrm{~g})
$$

At equilibrium, the concentrations of reactants and products are:
$\left[\mathrm{H}_{2}\right]=0.20 \mathrm{M} \quad\left[\mathrm{I}_{2}\right]=0.50 \mathrm{M}[\mathrm{HI}]=1.40 \mathrm{M}$
(a) Write the equilibrium constant expression K_{c} for the reaction.
\qquad
\qquad
(b) Using this information, calculate the equilibrium constant for the reaction.
(2 marks)
C. According the Brensted- Lowry model, define the following
(a) A Bronsted- Lowry acid (1 mark)
(b) A Bransted- Lowry base (1 mark)
\qquad
\qquad
\qquad
\qquad
D. In the following chemical equation, label each compound as acid, base, conjugate acid or conjugate base.

$$
\mathrm{HClO}_{4}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightleftarrows \mathrm{H}_{3} \mathrm{O}^{+}(\mathrm{aq})+\mathrm{ClO}_{4}^{-}(\mathrm{aq}) \quad(2 \text { marks })
$$

Total 15 marks

QUESTION 6: ENERGETICS

A. Distinguish between the following terms:

Exothermic reactions and Endothermic reactions
B. Draw suitable energy level diagrams to illustrate the changes taking place in the following reactions:
(a) $50 \mathrm{~cm}^{3}$ of sodium hydroxide (4.0 M) was added to $50 \mathrm{~cm}^{3}$ of 4.0 M hydrochloric acid. When the reaction was complete, the temperature had risen by $10^{\circ} \mathrm{C}$.
(b) 50.6 g of sodium nitrate were dissolved in $50 \mathrm{~cm}^{3}$ of water. The temperature fell by $16^{\circ} \mathrm{C}$.
C. When $25 \mathrm{~cm}^{3}$ of 2.0 moldm ${ }^{-3}$ nitric acid were added to $25 \mathrm{~cm}^{3}$ of $2.0 \mathrm{moldm}^{-3}$ sodium hydroxide in a styrofoam cup, the temperature rose from $27^{\circ} \mathrm{C}$ to $35^{\circ} \mathrm{C}$.

$$
\mathrm{NaOH}(\mathrm{aq})+\mathrm{HNO}_{3}\left(\mathrm{aq} \rightarrow \mathrm{NaNO}_{3}(\mathrm{aq})+\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right.
$$

(a) How many moles of sodium hydroxide are there in $25 \mathrm{~cm}^{3}$ of 2.0 moldm ${ }^{-3}$ of solution?
\qquad
\qquad
\qquad
\qquad
(2 marks)
(b) How many moles of water were produced in the above reaction?
(c) Calculate the heat given out in this reaction.
(Heat $\Delta \mathrm{H}=\mathrm{m}$ (mass in grams) x c $\times \Delta \mathrm{T}$)
($1 \mathrm{~cm}^{3}$ of a dilute solution has a mass of 1 g . Take specific heat capacity of this solution to be $4200 \mathrm{Jg}^{-1} \mathrm{~K}^{-1}$).
\qquad
\qquad
\qquad
\qquad
(d) What is the heat of neutralization $\Delta H_{n}{ }^{\ominus}$ produced when 1 mol of nitric acid reacts with 1 mol of sodium hydroxide?
\qquad
\qquad
\qquad
\qquad
(2 marks)
Total 15 marks

END OF TEST

The Periodic Table of the Elements

1111		- Group										III	IV	V	VI	VII	0
							1.0 H thydrogen 1										${ }_{2}$4.0 He heman
6.9 LI 3	9.0 Be berytham											\int_{5}10.8 baron	12.0 c 6	14.0 N n	16.0 0 8 oxpgen		20.2 10 $\mathrm{Ne}^{\text {nean }}$
23.0 Na soclum 11	24.3 Mg magnosium 12											27.0 Al aminum 13	28.1 Si 14	31.0 P phospherus 15	32.1 S 16 sutur	35.5 $C l$ chlarine 17	39.9 Ar agon 18
39.1 K patassium 19	40.1 Ca calcimm 20	45.0 $S C$ scindium 21	47.9 Til 22		520 Cr dircanium 24	54.9 Mn manganese 25	55.8 Fe iron 26	58.9 Co cotal 27	58.7 Ni nickel 28	63.5 6 Cu copper 29.	$\underbrace{}_{30}$65.4 Zn zinc	$\begin{array}{\|c\|} \hline 69.7 \\ 6 a \\ \text { gatium } \\ 31 \\ \hline \end{array}$	72.6 $G e$ gammanm 32	74.9 As arsenic 33	79.0 Se selanium 34	79.9 Br Bramine 35 18	83.8 Kr krypion 36
85.5 $R \mathrm{~B}$ nubicum 37	87.6 Sr strontium 38	88.9 Y yerium 39	91.2 Zr zincorium 40	92.9 Nb niobum 41	95.9 Mo molyodenum 42	Tc 43 43 matrime	101 $R u$ ruthenium 44	103 Rh nhodien 45	106 Pd palludium 46	108 Ag siver	112 $C d$ cadnum 48	115 In indium 49		122 Sb artimary 51	128 Te tolurimem 52	$\underset{53}{\substack{127 \\ 1 \\ i n d i n e}}$	131 Xe xemon 54
133 Cs 55	137 Ba barium 56	139 La Larahamum 57	$\begin{gathered} 178 \\ \text { Hif } \\ \text { hafnum } \\ 72 \end{gathered}$	181 Ta tantekun 73	184 W hungren 74	186 Re 75 merium	190 08 76	192 Ir 77	195 Pt plutinum 78	197 Au 79	201 Hg 80	$\begin{gathered} 204 \\ \mathrm{Tl} \\ \text { thallirm } \\ 81 \end{gathered}$		209 81 bismuth 83	$\overline{-}$ po 84	${ }_{85}^{\substack{\text { At } \\ \text { astatine }}}$	$\underbrace{\substack{- \\ \text { radon }}}_{86}$
\qquad	${ }_{88}^{\substack{\text { Ra } \\ \text { radum }}}$	$\begin{gathered} - \\ A C \\ \text { adioum } \\ 89 \end{gathered}$	$-m$ $R f$ ruthentordium 104	- Db dubriem 105	$\begin{array}{\|c} -\bar{c} \\ \mathrm{Sg} \\ \text { seaborgium } \\ 106 \end{array}$	$\underset{\substack{\text { Bh } \\ \text { bolvium } \\ 107}}{\substack{- \\ \hline}}$	$\underset{\substack{- \\ \text { hassamen } \\ 108}}{\substack{- \\ \hline}}$	$\begin{array}{\|c\|} \hline- \\ \text { Mt } \\ \text { meimerium } \\ 109 \\ \hline \end{array}$		$\substack{\text { Uuuu } \\ \text { unanurium } \\ 111}$	$\begin{array}{\|c} - \\ \text { Uub } \\ \text { Unurbium } \\ 112 \end{array}$						$\underset{\substack{\text { Uuo } \\ \text { urnoctiven } \\ 118}}{\substack{\text { in } \\ \hline}}$

lanthanides	$\begin{gathered} 140 \\ \text { Ce } \\ \text { cerivin } \\ 58 \end{gathered}$	$\|$141 Pr Presod yman 59	$\begin{array}{\|c\|} \hline 144 \\ \mathrm{Nd} \\ \text { neocymium } \end{array}$ 60	$\stackrel{-}{\text { Pr }}$ promethium 61	150 Sm semarim 62	152 Etu ourcpium 63	157 Gd gadomium 64	159 Tb terbivin 65	163 Dy dyєprosium 66	165 Ho 67		$\begin{gathered} 169 \\ \text { Tm } \\ \text { thetium } \end{gathered}$ 69	$\begin{gathered} 173 \\ \text { Yb } \\ \text { y thentimm } \end{gathered}$	
tinides		\qquad	$\underbrace{\bar{u}}_{\substack{\text { undinem } \\ 92}}$	$\begin{gathered} \mathrm{Np} \\ \text { nepturium } \\ 93 \end{gathered}$		Am ammericism 95	$\begin{gathered} \mathrm{Cm} \\ \text { courium } \\ 96 \end{gathered}$	$\begin{gathered} \text { BK } \\ \text { Derkelfan } \\ 97 \end{gathered}$	$\begin{aligned} & \text { Cf } \\ & \text { calfiominem } \\ & 98 \end{aligned}$	$\left\lvert\, \begin{aligned} & \text { Es } \\ & \text { einstiminum } \\ & 99 \end{aligned}\right.$	$\begin{aligned} & \text { Fm } \\ & 100 \\ & 100 \end{aligned}$	Mid mondefevium 101	$\begin{gathered} \text { No } \\ \text { nobelinm } \\ 102 \end{gathered}$	Lw temprencium 103

