SIR ARTHUR LEWIS COMMUNITY COLLEGE **DIVISION OF AGRICULTURE**

CHM102 – Credit Chemistry **END OF SEMESTER TWO EXAMINATION – 2018/2019**

Date: 30th April, 2019

Duration: 3 hours

Time: 1:00 pm

COMMUNITY TER J. FRANCOIS

MAR 19 2020

FORTUNE

Student ID Number:

INSTRUCTIONS

1. This is a THREE hour examination consisting of TWO Sections and a Periodic Table.

Section A - 20 Multiple Choice Questions Section B - 6 Structured Questions

- 2. <u>Answer ALL questions</u> for each section in the SPACES provided.
- 3. For numerical problems, ALL working must be shown for full marks
- 4. Use of pocket electronic calculators is permitted.

IMPORTANT FIGURES FOR THE EXAM

Molar volume at r.t.p: 24.0 dm³/mol

Molar Volume at s.t.p: 22.4 dm³/mol

1F = 96500C

Specific heat capacity of water= 4.18Jg⁻¹°C⁻¹

Section	Number	Marks Earned	Maximum Marks
Section A Multiple choice	1 - 20		20 marks
	1		20 marks
Section B	2		20 marks
Section D	3		20 marks
Structured Questions	4		15 marks
	5		15 marks
	6		15 marks
	TOTAL		125/ marks

DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO DO SO

ه <u>ه</u>

*

SIR ARTHUR LEWIS COMMUNITY COLLEGE **DIVISION OF AGRICULTURE**

CHM102 – Credit Chemistry END OF SEMESTER EXAMINATION Semester II,

Date: 30th April, 2019

Time: 1:00 pm

Duration: 3 hours

Student ID Number:

INSTRUCTIONS

1. This is a THREE hour examination consisting of TWO Sections and a Periodic Table.

Section A – 20 Multiple Choice Questions Section B – 6 Structured Questions

- 2. Answer ALL questions for each section in/the SPACES provided.
- 3. For numerical problems, <u>ALL working must be shown</u> for full marks.
- 4. Use of pocket electronic calculators is permitted.

IMPORTANT FIGURES FOR THE EXAM

Molar volume at r.t.p: 24.0 dm3/mol 1F = 96500C

Specific heat capacity of water= 4.18Jg^{-1o}C⁻¹

Molar Volume at s.t.p: 22.4 dm3/mol

Section	Number	Marks Earned	Maximum Marks
Section A Multiple choice	1 - 20		20 marks
	1		20 marks
Section B	2		20 marks
	3		20 marks
Structured Questions	4		20 marks
	5		20 marks
	TOTAL		120/ marks

DO NOT TURN THE PAGE UNTIL YOU ARE TOLD TO DO SO

SECTION A

MULTIPLE CHOICE QUESTIONS

Shade the letter that corresponds to the correct answer for each question.

1. Aluminum sulphate can be manufactured in a chemical process as shown in the following equation:

 $2Al(OH)_3 + 3H_2SO_4 \rightarrow Al_2(SO_4)_3 + 6H_2O$

How many moles of sulphuric acid are needed to produce 0.40 mol of aluminium sulphate?

(A) 0.6 (B) 2.0 (C) 1.6 (D) 3.0

- 2. Which of the following BEST describes a limiting reagent?
 - (A) The reactant that is not completely used up in a chemical reaction.
 - (B) The product that is not completely used up in a chemical reaction.
 - (C) The reactant that is completely used up in a chemical reaction.
 - (D) The product that is completely used up in a chemical reaction.
- 3. What is the name of the salt that is formed from the reaction between hydrochloric acid and sodium hydroxide?
 - (A) Hydrogen hydroxide(B) sodium hydrochloride(C) sodium Hydride(D) sodium chloride
- 4. In the following reaction: $2 C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$, what is the ratio of carbon dioxide to carbon ethane?
 - (A) 2:1 (B) 4:7 (C) 7:4 (D)7:6
- 5. John weighed a 20.0 g sample of sodium carbonate (Na₂CO₃) to be used in the laboratory to perform an experiment. How many moles of sodium carbonate is contained in this sample?

(A) 1.89 mol (B) 212 mol (C) 2.12 x 10³ mol (D) 0.189 mol

GO ON TO THE NEXT PAGE

10 5

6. Which of the following half reactions does not represent the oxidation half of a redox reaction?

 $\begin{array}{l} (A)\,Mg\,(s) \longrightarrow Mg^{2^{+}}\,(aq) \\ (B)\,2Cl^{-}\,(aq) \longrightarrow Cl_{2}\,(g) \\ (C)\,Sn^{2^{+}}\,(aq) \longrightarrow Sn^{4^{+}}\,(aq) \\ (D)\,Cu^{2^{+}}\,(aq) \longrightarrow Cu^{+}\,(aq) \end{array}$

7. In the reaction, $Cu^{2+} + Zn \rightarrow Cu + Zn^{2+}$, the reducing agent is:

(A)Zn (B) Zn^{2+} (C)Cu (D)Cu²⁺

8. Pick out the statement that correctly defines an oxidizing agent in a redox reaction.

(A) The oxidizing agent causes another substance to be oxidized and gains electrons(B) The oxidizing agent causes another substance to be reduced and gains electrons(C) The oxidizing agent is the substance that is oxidized in the redox reaction(D) The oxidizing agent loses electrons in a redox reaction and is reduced.

9. In the electrolysis of molten copper (II) sulphate using copper electrodes, the substance formed at the anode is

```
(A) oxygen
```

(B) copper

(C) chlorine

(D) hydrogen

10. Which two of the following equations represent the reaction taking place at the electrodes when copper sulphate solution is electrolyzed using copper electrodes?

I $Cu_{(S)} \rightarrow Cu^{2+} + 2e^{-}$ II $SO_4^{2-}(aq) \rightarrow SO_4(aq) + 2e^{-}$ III $4OH^{-}(aq) \rightarrow 2H_2O_{(1)} + O_{2(g)} + 4e^{-}$ IV $Cu^{2+} + 2e^{-} \rightarrow Cu_{(s)}$

(A) I and III(B) I and IV(C) II and III(D) II and IV

11. Which of the following will NOT conduct electricity?

(A) Solid sodium(B) Solid sodium chloride(C) A solution of sodium chloride in water(D) Molten sodium chloride

12. What is the term for the electrode where oxidation occurs?

(A) anode (B) cathode (C) oxidizing agent (D) reducing agent

13. What are the oxidation states of vanadium in the ions VO_4^{3+} respectively?

(A) +4 and +5 (B) +4 and +8 (C) +6 and +5 (D) +6 and +8

14. Identify the substance below that would be an active electrode in electrolysis.

(A) Carbon	(B) Copper	(C) Titanium	(D) Graphite
------------	------------	--------------	--------------

15. Aluminum is in group III of the periodic table. How many moles of product would be formed by the passage of 193000 C of electricity? 1 mol = 96500 C/mol

(A) 0.002 (B) 0.02 (C) 0.2 (D) 2.0

- 16. Which of the following factors will increase the rate of a chemical reaction involving gases?
 - (A) Decreasing the temperature
 - (B) Adding less reactants to the mixture
 - (C) Adding a catalyst
 - (D) Increasing the volume of the container

17. Which of the following graphs illustrates the Boltzmann distribution curve?

- 18. Which BEST describe how a catalyst works?
 - (A) Catalysts increase the rate of a chemical reaction by increasing the activation energy.
 - (B) Catalysts increase the rate of a chemical reaction by increasing the concentrations of the reactants
 - (C) Catalysts increase the rate of a chemical reaction by increasing the temperature of the reaction mixture.
 - (D) Catalysts increase the rate of a chemical reaction by providing a different low energy mechanism for the reaction

19. The slowest step of the reaction mechanism of a chemical reaction is called

(A) Activation energy	(C) Rate determining step
(B) Energy evolution step	(D) Reaction Catalyst

20. The equilibrium constant for the reaction $2A + B \Rightarrow 3C + D$

$(A) \frac{[C]^{\mathfrak{s}}[D]}{[A]^{\mathfrak{s}}[B]}$	$(\mathbf{C}) \frac{[2A][B]}{[3C][D]}$
---	--

```
(B) \frac{[3C][D]}{[2A]B]} (D) \frac{[A]^2[B]}{[C]^3[D]}
```

GO ON TO THE NEXT SECTION

Total 30 marks

SECTION B

This section contains a compulsory questions.

Answer and show ALL working for full marks.

Question 1: STOICHIOMETRY

- 1. Liquefied petroleum gas (LPG) commonly known as cooking gas contains mainly the hydrocarbon propane C₃H₈ that has been compressed into a metal cylinder for easy storage and use. Propane is a very good fuel that burns completely in oxygen gas to produce carbon dioxide and water vapour.
 - (a) Write a balanced chemical equation to show the products formed from the burning of propane gas. You must include state symbols! (3 marks)
 - (b) Mark, a chemistry student, during an experiment combined 10.0 g of propane with 10.0g of oxygen at s.t.p.
 - (i) Determine the limiting reactant (6 marks)

(ii) What reactant was present in excess? Determine the mass of the reactant in excess that was left at the end of the reaction. (4 marks)

(iii) What is the theoretical yield in grams of carbon dioxide produced? (3 marks)

 (iv) If 4032 cm³ of carbon dioxide were collected, determine the percent yield for the reaction. (4 marks)

Total 20 marks

SECTION C

This section contains Two (2) questions. Choose and answer One (1) question. Show all working for full marks.

Question 2: OXIDATION AND REDUCTION

Use the following equation to answer the questions below:

	$Zn (s) + Cu \xrightarrow{2+} (aq) \rightarrow Zn^{2+} (aq)$	$Zn(s) + Cu^{2+}_{(aq)} \rightarrow Zn^{2+}_{(aq)} + Cu_{(s)}$		
A.	Define oxidation	(1 mark)		
B.	Define reduction	(1 mark)		
C.	Which species is oxidized?	(1 mark)		
D.	Write the half equation for the oxidation	(1 mark)		
E.	Which species is reduced?	(1 mark)		
F.	Write the half equation for the reduction	(1 mark)		

G.	Which is the oxidizing agent?	(1 mark)	
H.	Which is the reducing agent?	(1 mark)	_
I.	Find the oxidation state of the underlined	element in the following sub	ostances:
	(a) $\underline{\mathbf{Cr}} \operatorname{O}_4^{2-}$		
	(b) K <u>Mn</u> O ₄		
×.	(c) $K_2 \underline{Cr} O_7$		
	(d) <u>Na</u>		
			(4 marks
(a)	Al^{3+} + $Zn \rightarrow Al + Zn^{2+}$		(4 marks)
	=		-
(b)	$Cl_2 + Cu \rightarrow CuCl_2$		(4 marks)
			-
			-
			- Total 20 marks

Question 3: ELECTROCHEMISTRY

(a)	What ions are present in the electrolyte?	(1 mark)
Wh	at ions move toward the anode and the cathode respectively? (2 mark	
(b)	What 3 factors determine which ions are discharged at the electrodes?	(3 marks)
(c)	Which ion is discharged at the cathode? Why? (2 marks)	
(d)	Write the anode half equation (1 mark	.)
(e)	Write the cathode half equation	(1 mark)
(f)	Calculate the quantity of electrical charge in coulombs that was passe compound.	ed through (2 marks)
(g)	Calculate (i) the number of moles of copper deposited on the electrode (ii) the many grams of copper deposited	

B. Electrolysis was carried out continuously on a molten sample of MgCl₂.

Show a possible apparatus for this electrolysis process.

,

(5 marks)

Total 20 marks

SECTION D

This section contains three (3) questions.

Answer TWO (2) questions. Show ALL working for full marks.

QUESTION 4: REACTION KINETICS

A. Define the following terms as they relate to reaction kinetics:

(a) Rate of reaction	(1 mark)
(b) Catalyst	(1 mark)
B. List 2 factors which affect the rate of a chemical reaction	n (2 marks)

C. The Boltzmann distribution curve below represents the effect of temperature on the rate of a chemical reaction.

(a) Draw the Boltzmann distribution curve. Label your axes. (3 marks)

(b) Indicate on your curve:

- The activation energy
- The molecules having less than the activation energy
- The molecules having more than the activation energy (3 marks)

(c) Redraw your curve on a different graph. If the temperature, T₁, was increased by 10 °C to T₂, draw a separate curve on this same graph to represent the effect of this increase in temperature. (2 marks)

(d) What effect does this increase in temperature have on the rate of the reaction? Give <u>one</u> explanation.

(2 marks)

Total 15 marks

GO ON TO THE NEXT PAGE

QUESTION 5: EQUILIBRIUM

A. The reaction

 $2\mathrm{SO}_{2}\left(g\right) + \mathrm{O}_{2}\left(g\right) \leftrightarrow 2\mathrm{SO}_{3}\left(g\right)$

reaches equilibrium in a closed system. The forward reaction is exothermic. The reaction is catalyzed by V_2O_5 .

(a) Explain dynamic equilibrium

(1 mark)

(b) V	Vhat will happen to the position of the equilibrium	when:
	Some SO3 is removed from the vessel?	(2 marks)
_		
ii)	The temperature of the vessel is increased?	(2 marks)
		-
iii)	The pressure of the vessel is lowered?	(2 marks)
ons	ider the following equilibrium reaction	

At equilibrium, the concentrations of reactants and products are:

 $[H_2] = 0.20 \text{ M}$ $[I_2] = 0.50 \text{ M}$ [HI] = 1.40 M

(a) Write the equilibrium constant expression K_c for the reaction. (2 marks)

(b) Using this information, calculate the equilibrium constant for the reaction. (2 marks)

C. According the Bronsted- Lowry model, define the following

· · · · · · · · · · · · · · · · · · ·	
(b) A Bronsted- Lowry base	(1 1

D. In the following chemical equation, label each compound as acid, base, conjugate acid or conjugate base.

 $HClO_4(aq) + H_2O(l) \rightleftharpoons H_3O^+(aq) + ClO_4^-(aq)$ (2 marks)

Total 15 marks

QUESTION 6: ENERGETICS

A. Distinguish between the following terms:

Exothermic reactions and Endothermic reactions (2 marks)

- B. Draw suitable energy level diagrams to illustrate the changes taking place in the following reactions:
- (a) 50 cm³ of sodium hydroxide (4.0M) was added to 50 cm³ of 4.0 M hydrochloric acid. When the reaction was complete, the temperature had risen by 10 ^OC.

(2 marks)

(b) 50.6 g of sodium nitrate were dissolved in 50 cm³ of water. The temperature fell by 16°C.

(2 marks)

C. When 25cm³ of 2.0 moldm⁻³ nitric acid were added to 25 cm³ of 2.0 moldm⁻³ sodium hydroxide in a styrofoam cup, the temperature rose from 27°C to 35°C.

NaOH (aq) + HNO₃ (aq \rightarrow NaNO₃ (aq) + H₂O (l)

(a) How many moles of sodium hydroxide are there in 25cm³ of 2.0 moldm⁻³ of solution?

(2 marks)

(b) How many moles of water were produced in the above reaction? (2 marks)

(c) Calculate the h	eat given out in this rea	action.		
(1 cm ³ of a this solution	dilute solution has a m n to be $4200 \text{ Jg}^{-1}\text{K}^{-1}$).	ass of 1 g.	Take specific h	eat capacity of
· ·				(3 mark
(d) What is the heat with 1 mol of s	at of neutralization ∆H _n sodium hydroxide?	° produced	when 1 mol of 1	nitric acid reacts
				(2 mark

END OF TEST

								Gr	oup								
1												IV	V	VI	VII	0	
	1.0 H hydrogen 1														4.0 He helium 2		
6.9	9.0											10.8	12.0	14.0	16.0	19.0	20.2
LI	Be											В	C	N	0	F	Ne
Rthium	beryllium											baron	carbon	nitrogen	oxygen	fluorine	neon
3	4											5	6	7	8	9	10
23.0	24.3											27.0	28.1	31.0	32.1	35.5	39.9
Na	Mg											Al	SI	P	S	CI	Ar
sodium	magnesium											aluminium	silicon	phosphorus	sulfur	chlorine	argon
11	12	47.0	177.0		50.0						1	13	14	15	16	17	18
39.1	40.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.4	69.7	72.6	74.9	79.0	79.9	83.8
ĸ	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	NI	Cu	Zn	Ga	Ge	As	Se	Br	Kr
potassium	calcium	scandium	bitanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
19	20	21	22	23	24	20	20	21	28	29	30	31	32	33	34	35	36
85.5	67.0	00.9	91.2	92.9	95.9	Te	101	103	106	108	112	115	119	122	128	127	131
RD	Sr	T	12	ND	MO	IG	Ru	Rn	Pd	Ag	Cd	In	Sn	Sb	Те	I	Xe
37	38	39	40	41	42	43	AA	45	A6	AT7	cadmium A.R	10dium	50	antimony	tellurium	iodine	xenon
133	137	139	178	181	184	186	190	102	105	107	201		207	000	52	53	54
Ce	Ba	12	HF	Ta	W	Re	00	Ir	Pt	Au	Ha	204 TI	Dh	209	-	-	-
caesium	barium	lanthanum	hafnium	tantalum	tungsten	rhenium	oanium	iridium	olatioum	add	memory	1 C	FU	DI	PO	AI	Rn
55	56	57 *	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
-	Press.		PTTTS					701100			mm		with				
Fr	Ra	Ac	Rf	Db	Sg	Bh	Hs	Mt	Unu	Uuu	Uub		Uuq		Llub		Lino
francium	radium	actinium *	rutherfordium	dubnium	seaborgium	bohrium	hassium	meitnerium	ununnilium	unununium	ununbium		ununquadium		ununhexium		ununoctium
87	88	89 *	104	105	106	107	108	109	110	111	112		114		116		118

The Periodic Table of the Elements

	140	141	144		150	152	157	159	163	165	167	169	173	175
lanthanides	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
tornarior adda *	cerium	praseodymium	neodymium	promethium	semarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	viterbium	Lextertisum
	58	59	60	61	62	63	64	65	66	67	68	69	70	71
							-	-			anan			
actinides *	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lw
*	thosium	protaclinium	uranium	neptunium	plutonium	americium	CURIUM	berkelium	californium	einsteinium	fermium	mendelevium	nobalium	lawrencium
	90	91	92	93	94	95	96	97	98	99	100	101	102	103

η,